Here is a CV I received for a position of “Research scientist” some time back:
Sadly, the person who applied for the CV had very little chance of getting the position. I am not saying this after looking at the skillset of the person. Instead, I am instead telling this by just glancing through the person’s CV. The first half a page on CV doesn’t tell its reader anything about the person or his / her skillset. No wonder, this was a 3 page CV for a person with 2 years of experience!
Here is another instance – a cover email which led to rejection of the candidate even before his CV was opened.
His “Exceptionall” skills were clearly at work here! Spelling errors, grammatical mistakes, poor typesetting, illogical sentences – you name a mistake and this email would likely have it!
Here is a tip which can save you from a lot of trouble:
A good CV might not be sufficient to get you selected,
But, a bad CV can be sufficient to get you rejected!
This article aims to provide you with some thoughts to make your CV stand out from the stack of CVs for any data science role.
Here are a few tips to get the basics in place. I am just listing the tips here as most of you would know these or can find better guidance on basics on the web.
Once a basic version of your CV is ready, you can start thinking “How to can tailor your CV depending on the role you are applying for?” Emphasize and highlight projects which showcase the skills required in the role you are applying for. There are broadly two classes of roles available in analytics industry currently:
By now, you should have a basic CV ready and you would have emphasized the right skills for the role. Next, I would mention a few examples and techniques to take your CV to the next level. Consider these examples as High risk, High return strategies. You should not attempt them until your basic CV is ready.
If you do these things well, you can get a very high return. However, if you do a bad job in executing these things well, these things can backfire. The main purpose of these techniques is to distinguish your CV against the bunch of CVs, which employers get for good positions.
Here is a good example of an infographic designed by a graphic designer. He has highlighted his skills and knowledge of tools.
Why does an infographic like this work? This works because creating this shows that you can take a lot of data and represent that in a nice and effective manner – a skill every data scientist or manager needs to possess.
Consider your CV as your real estate for showcasing yourself in a limited space – something similar to what you need to do in business dashboards. So, if you can create an interactive dashboard about yourself (with drill downs), you can again drive your CV home. Here are a CV from Dmitry Gudkov, which was available on the internet:
You can also use story-telling features from QlikSense or Tableau. This not only shows that you can visualize data effectively, but also that you know about the latest features in some of the tools.
Here is another example of a CV, which an applicant created while applying for a Digital marketing manager. Google Analytics is the most commonly used tool for digital marketing. So, he created his CV in form of a dashboard, which resembles Google Analytics dashboard closely.
With these examples, you would now understand what I mean by high risk, high return strategy. If you do pursue to create something like this, you will need to spend a lot of time thinking what information should come on CV and what should go off. However, that is time well spent.
After all, if you do create a nice visualization about yourself, it will definitely set you apart from the league.
What do you think of these tips? Have you used them to differentiate your CV. I am trying to develop a Python script, which scraps my professional profile over the internet, mines the data and then summarizes the data in a page. Do you have any other idea which can make you stand out? Please feel free to share your thoughts through comments below.
Lorem ipsum dolor sit amet, consectetur adipiscing elit,